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Abstract. Maps for nonlinear evolution equations are discussed. An algorithmic method for
deriving rational solutions is presented. This approach is illustrated by examples which have
solutions in the form of two truncated expansions.

1. Introduction

In this paper a method for deriving rational solutions of some nonlinear partial differential
equations is presented. The approach is based on the use of those truncated expansions
found by expanding a solution of the origin equation in a Laurent series.

The most important property of nonlinear evolution equations is the existence of rational
solutions. They are interesting in themselves and especially are useful when solving
problems containing many elements [1].

Rational solutions have been studied in a number of works. Airault, Mckean and Mozer
[2] were the first to find rational solutions to the Korteveg–de Vries (KdV) equation. Later
rational solutions to some nonlinear evolution equations were obtained by Ablowitz and
Satsuma [3] and Adler and Moser [4, 5].

Rational solutions of many nonlinear evolution equations were also obtained by Weiss
[6], who used the singular manifold method for their determination. However, he used only
the one-singular manifold method in his approach and had to attract discrete symmetries to
reach his solutions [7–10].

In this paper the two-singular manifold method [11, 12] for deriving rational solutions
is used. This approach is applicable if the nonlinear evolution equations have two (and
more) families at the expansion of solutions in a Laurent series. This method can be used
for deriving rational solutions of the ‘modified’ equations. However, by using the Miura
transformations, it actually allows us to obtain solutions to many other nonlinear equations.
The approach used in this paper is actually close to a method applied by Weiss; however,
it is much easier and is algorithmic.

Current interest in the Painlevé property is known to stem from the observations made by
Ablowitz and Segur [13] and Ablowitzet al [14, 15] that reductions of partial differential
equations of the soliton type give rise to ordinary differential equations whose movable
singularities are only poles. This circumstance has reduced them to a famous hypothesis
about the Painlev́e property. The conclusion drawn is that the nonlinear partial equation
is solved by the inverse scattering transform if all reductions of the given equation to the
ordinary differential equations lead to those equations that have the Painlevé property.
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However, the application of this hypothesis in practice runs into problems when
checking all those reductions which have nonlinear partial differential equations. In this
connection Weisset al [6] have suggested modification of this hypothesis for nonlinear
partial differential equations. They are carrying out research into solutions of nonlinear
partial differential equations as expansions in the Laurent series with singularities made in
some surface. Essentially they have included a new function which contains information
about properties of the equation being investigated. This method has proved very effective
during the study of many properties of nonlinear partial differential equations [8–12].

The application of the singular manifold method for research into the ‘modified’
nonlinear equations has appeared less effective and Musette and Conte [11] and Conteet al
[12] presented further generalizations of the singular manifold method when two families
of the expansion of solution in the Laurent series are discounted.

Later it will be shown that the two-singular manifold method quickly gives rational
solutions to some nonlinear partial differential equations.

The outline of this work is as follows. In section 2 those relations connecting some
nonlinear partial differential equations to their singular manifold equations are considered.
These relations illustrate that the solutions of some nonlinear equations can be obtained
through solutions of the singular manifold equations using truncated expansions. The
statement of this method is given in section 3. This is then used for the derivation of
rational solutions to the fifth-order modified Korteveg–de Vries (MKdV) equation. Our
approach for deriving rational solutions to the classical Boussinesq equation is applied in
section 4.

2. Maps and integrability for nonlinear evolution equations

Let us show that relations exist between some nonlinear evolution equations and their
singular manifold equations. These relations can be obtained using truncated expansions.
To illustrate this let us use the MKdV equation.

It is well known that the solutions of the MKdV equation

E(u) = ut − 3
2u

2ux + uxxx = 0 (2.1)

can be presented in the form of two truncated expansions [6]

u = −2zx
z
+ u1 u1 = zxx

zx
(2.2)

and

v = 2ϕx
ϕ
+ v1 v1 = −ϕxx

ϕx
(2.3)

wherez(x, t) andϕ(x, t) are new functions that characterize singular manifolds.
It is also known that the singular manifold equation found during the Painlevé analysis

of equation (2.1) takes the form [6]

D(z) = zt + zx{z; x} = 0 (2.4)

where

{z; x} = zxxx

zx
− 3

2

z2
xx

z2
x

(2.5)

is the Schwarzian derivative.
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Recently the right relations were found that connect the MKdV and KdV hierarchies
with their singular manifold equations [16, 17]. These relations, as applied to equations (2.1)
and (2.4), take the forms

E(u) = AzD(z) E(u1) = BzD(z) (2.6)

E(v) = −AϕD(ϕ) E(v1) = −BϕD(ϕ) (2.7)

where operatorsAz andBz take the forms

Az = ∂

∂x

(
1

zx

∂

∂x
− 2

z

)
Bz = ∂

∂x

(
1

zx

∂

∂x

)
. (2.8)

Subscripts in operators (2.8) mean variables in them. EquationsE(u1) = 0, E(v) = 0 and
E(v1) = 0 are equation (2.1) andD(ϕ) = 0 is equation (2.4).

From relations (2.6)–(2.8) the solutions to equation (2.1) can be obtained using truncated
expansions (2.2) and (2.3) if the solutions to equation (2.4) are known.

Truncated expansions (2.2) and (2.3) also lead to two invariants [18, 19]

ω1 = ux − u
2

2
= u1x − u

2
1

2
= {z; x} (2.9)

ω2 = vx − v
2

2
= v1x − v

2
1

2
= −{ϕ; x} (2.10)

which are the Miura transformations for the KdV equation

Q(ω) = ωt + 3ωωx + ωxxx = 0. (2.11)

Taking into account equations (2.6) and (2.7) the following relations for the KdV
equation can be written

Q(ω1) = LzAzD(z) Q(ω2) = −LϕAϕD(ϕ) (2.12)

where the operatorLϕ takes the form

Lϕ =
(
∂

∂x
+ 2ϕx

ϕ
− ϕxx
ϕx

)
(2.13)

which shows that the solutions to equation (2.11) can be obtained by the given solutions to
equation (2.4) by formulae (2.9) and (2.10).

The above-mentioned maps are relative to the MKdV and the KdV equations which
can be solved by inverse scattering transform. However, this raises the question of the
connection of the existence of such maps and the integrability of the nonlinear equation.
More than that there is also the good question of similar relations for nonintegrable evolution
equations [20].

It is noted that examples of nonintegrable equations which have similar relations can
be found but a different result ensues in these cases.

Let us discuss this. For example if we take the equation [21]

E1(u) = ut − 2uxuxx − 2uu2
x − u2uxx + uxxxx = 0 (2.14)

then one can present the solutions of this equation in the form of two truncated expansions

u = −2zx
z
+ u1 u1 = zxx

zx
(2.15)

and

v = 3ϕx
ϕ
+ v1 v1 = −3

2

ϕxx

ϕx
. (2.16)
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What is more one can obtain the following maps taking into account formula (2.15)

E1(u) = −AzD1(z) E1(u1) = BzD1(z) (2.17)

where

D1(z) = zt + zx ∂
∂x
{z; x} = 0. (2.18)

However, it is not possible to use formula (2.16) to obtain relations like (2.17). In fact
substituting (2.16) into equation (2.14) actually leads to some equationD′n(ϕ) = 0 which
does not coincide with equation (2.18). In this case it is impossible to suggest the relations
for equation (2.14) and similarly for (2.17). There is no difficulty in understanding why the
example was doomed to failure, the problem being that equation (2.14) is not solvable by
the inverse scattering transform. It is significant that the Painlevé test for equation (2.14)
shows that one family of the solution expansion passes it but another family does not and
equationD′n(ϕ) = 0 is not the singular manifold equation in this case.

Now one can formulate the sufficiency condition for the integrability of some nonlinear
evolution equation.

Proposition 2.1.Let equationE(u) = 0 be given and its solution presented in the form of
truncated expansions like (2.2) and (2.3) connecting the original equation with its singular
manifold equations. Then equationE(u) = 0 can be solved when the singular manifold
equation is an integrable equation.

Proof. The rigorous arguments of this proposition are not given. It must be kept in mind
here that the singular manifold equation contains a number of properties. First, this equation
is found at the Painlev́e analysis of the original equation. Secondly, this equation is unique
for every family of the solution expansion. Thirdly, every singular manifold equation has
two symmetries such that if we use them for the one of the first family we will obtain
the singular manifold equation of another family and vice versa. If the singular manifold
equation has the above-listed properties it can be confirmed that the singular manifold
equation is a solvable equation. Taking into account maps like (2.6) and (2.7) it can be seen
that equationE(u) is a solvable equation also. �
Remark 2.1.Two symmetries for the singular manifold equation are thought to lead to the
integrability of this and in fact proposition 2.1 corresponds to the map of one solvable
nonlinear equation into another solvable equation.

It is interesting to consider maps of the equation

G(u) = ut + ∂

∂x
(uxxxx + 5uxuxx − 5u2uxx − 5uu2

x + u5) = 0 (2.19)

which were first written by Fordy and Gibbons [22]. This equation has four singular
behaviours and the solutions of equations (2.19) can be presented in the form of the four
truncated expansions, two of them are:

u = zx

z
+ u1 u1 = − zxx

2zx
(2.20)

and

v = −2ϕx
ϕ
+ v1 v1 = ϕxx

ϕx
. (2.21)

These truncated expansions lead to the following two singular manifold equations [7]

D1(z) = zt + zx [{z; x}xx + 1
4{z; x}2] = 0 (2.22)
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and

D2(ϕ) = ϕt + ϕx [{ϕ; x}xx + 4{ϕ; x}2] = 0. (2.23)

However, the other two truncated expansions do not lead to concrete singular manifold
equations because these expansions correspond to families at negative indices [23, 24].

Transformations (2.20) and (2.21) map the solutions of equations (2.22) and (2.23) into
the solutions of equation (2.19) according to the following equalities

G(u) = − 1
2AzD1(z) G(u1) = − 1

2BzD1(z) (2.24)

G(v) = AϕD2(ϕ) G(v1) = BϕD2(ϕ). (2.25)

It is significant that there are the following invariants

ω1 = ux + u2 = u1x + u2
1 = − 1

2{z; x} (2.26)

ω2 = vx − v
2

2
= v1x − v

2
1

2
= {ϕ; x} (2.27)

which are obtained from truncated expansions (2.20) and (2.21).
By applying the Miura transformations (2.26) and (2.27) to equation (2.19) one can find

the relations

E3(ω1) = − 1
2LzAzD1(z) E3(ω1) = − 1

2MzBzD1(z) (2.28)

E4(ω2) = LϕAϕD2(ϕ) E4(ω2) = MϕBϕD2(ϕ) (2.29)

where operatorMz is the following

Mz = ∂

∂x
− zxx
zx

andE3(ω1) = 0 andE4(ω2) = 0 are the Caudrey–Dodd–Gibbon and Kaup–Kupershmidt
equations [25–27].

E3(ω1) = ω1t + 5ω2
1ω1x − 5ω1xω1xx − 5ω1ω1xxx + ω1xxxxx = 0 (2.30)

E4(ω2) = ω2t + 10ω2ω2xxx + 25ω2xω2xx + 20ω2
2ω2x + ω2xxxxx = 0. (2.31)

Assurance is given that equations (2.30) and (2.31) have the solutions which are found by
formulae (2.26) and (2.27) at given solutions of equations (2.22) and (2.23).

It is necessary to note that it will not be possible to find relations like (2.24),
(2.25), (2.28) and (2.29) if we take the other two truncated expansions for solutions
of equation (2.19). In this case these truncated expansions, as distinct from (2.20) and
(2.21), do not correspond to families of solutions whose movable singularities are poles.
These families have negative indices that can be investigated by special methods [23, 24].
However, equations (2.19), (2.30) and (2.31) can be solved by inverse scattering transform
[25–27] and they possess the Painlevé test.

3. Method for deriving rational solutions

We have presented the relations which connect some nonlinear evolution equations with their
singular manifold equations. These relations were obtained using the truncated expansions
of solutions like (2.2) and (2.3).

Let us describe the algorithm which we are going to apply for deriving rational solutions
of some nonlinear evolution equations. Let the original equationE(u) = 0 be given and



5450 N A Kudryashov

let its rational solutions be found. Let us assume that the solution of this equation can be
presented in the form of two truncated expansions

u = a zx
z
+ u1 (3.1)

and

v = bϕx
ϕ
+ v1 b 6= a (3.2)

whereu1 andv1 depends on derivatives ofz andϕ.
First, singular manifold equations have to be found which correspond to the

representations of solutions (3.1) and (3.2). Secondly, it is important to analyse these
singular manifold equations as being subject to symmetry. Thirdly, the maps of the singular
manifold equations can be placed into the original equationE(u) = 0.

Then the following equality should be assumed:

u = v1 (3.3)

or

v = u1. (3.4)

In the case when the singular manifold equations are different equations (3.3) and (3.4)
can be used jointly.

Equalities (3.3) and (3.4) and singular manifold equations are applied to find the rational
solutions for the given equation:E(u) = 0. Let this approach be demonstrated using the
fifth-order MKdV equation.

This equation can be written in the form [7]

ut + ∂

∂x

(
uxxxx − 5

2
u2uxx − 5

2
uu2

x +
3

8
u5

)
= 0. (3.5)

Equation (3.5) has the four families of the solution expansion but we have to take the
truncated expansions corresponding to the two principal families

u = −2ϕx
ϕ
+ u1 u1 = ϕxx

ϕx
(3.6)

and

v = 29x
9
+ v1 v1 = −9xx

9x
. (3.7)

The singular manifold equations which correspond to equation (3.5) were found by
Painlev́e analysis of equation (3.5). They coincide for two families and take the form [7]

ϕt + ϕx [{ϕ; x}xx + 3
2{ϕ; x}2] = 0. (3.8)

Using truncated expansions (3.6) and (3.7) the four relations between equation (3.5)
and its singular manifold equation (3.8) like (2.6)–(2.9) can be obtained. Consequently,
solutions to equation (3.5) can be found as solutions to equation (3.8) taking into account
the four formulae of (3.6) and (3.7).

Equatingu = v1 we have

2ϕx
ϕ
− ϕxx
ϕx
= 9xx

9x
(3.9)

which gives the relation of Weiss [7]

9x = c(t)ϕ
2

ϕx
(3.10)
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after integration overx.
Using equalityu1 = v one can obtain formula (3.10) as well.
Assumingϕ = zn, 9 = zn+1 we have the iterative formula

zn+1,x = z2
n

znx
(3.11)

for deriving rational solutions of equations (3.5) and (3.8).
Let z0 = x then we obtain from equations (3.11) and (3.8)

z1 = x3

z2 = x5− 720t

z3 = x7− 5040x2t − 1209 600t2x−3

(3.12)

and so on.

4. Rational solutions of the classical Boussinesq equation

The classical Boussinesq, or Broer–Kaup, system

ut + ωx + uux = 0 (4.1)

ωt + uxxx + (uω)x = 0 (4.2)

is equivalent to the scalar partial differential equation [12]

E(u) = uxxx − 3
2u

2ux − 2uut − ux∂−1ut − ∂−1utt = 0. (4.3)

Solutions of equation (4.3) can be presented in the form of two truncated expansions

u = −2ϕx
ϕ
+ u1 u1 = − ϕt

ϕx
+ ϕxx
∂x

(4.4)

and

v = 29x
9
+ v1 v1 = −9t

9x
− 9xx
9x

. (4.5)

Equation (4.3) can be rewritten in the following forms [28, 29]

E(u) = ∂

∂x

[(
∂

∂x
+ u+ ∂−1 ∂

∂t

)(
ux − 1

2
u2− ∂−1ut

)]
= 0 (4.6)

and

E(v) = ∂

∂x

[(
− ∂

∂x
+ v + ∂−1 ∂

∂t

)(
−vx − 1

2
v2− ∂−1vt

)]
= 0. (4.7)

Using formulae (4.4) and (4.5) it can be seen that there are equalities

ω1 = ux − 1
2u

2− ∂−1ut = u1x − 1
2u

2
1− ∂−1u1t (4.8)

and

ω2 = −vx − 1
2v

2− ∂−1vt = −v1x − 1
2v

2
1 − ∂−1v1t . (4.9)

These invariants lead to the singular manifold equations of (4.1) that take the forms
[29]

S − 1
2C

2+ 2Cx − ∂−1Ct = 0 (4.10)

and

S − 1
2C

2− 2Cx − ∂−1Ct = 0 (4.11)
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where [18, 19]

S = {ϕ; x} C = − ϕt
ϕx
. (4.12)

Assumingu1 = v we have

ϕt − ϕxx
ϕx

= 9t +9xx
9x

− 29x
9
. (4.13)

One can organize the iterative process using9 = zn andϕ = zn+1 for deriving rational
solutions of equation (4.3)

zn+1,t − zn+1,xx

zn+1,x
= zn,t + zn,xx

zn,x
− 2znx

zn
. (4.14)

If we takez0 = x then we obtain

z1 = x2− 2t

z2 = x3− 6xt

z3 = x4− 12x2t + 12t2

z4 = x5− 20x2t + 60xt2

(4.15)

and so on.
Assumingu = v1 other rational solutions of equation (4.3) can also be obtained.

5. Conclusion

Let us emphasize the results of this work. Using the two-singular manifold method [11, 12]
we have presented the approach for deriving rational solutions of some nonlinear evolution
equations. We have also discussed maps of the singular manifold equations into some
nonlinear evolution equations. This allowed the proof of our method. Rational solutions
to the fifth-order MKdV and the classical Boussinesq equations were used as examples to
demonstrate the application of this method.
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